Комбинированный прибор измерения высокого напряжения


В статье рассматривается измерительный прибор самостоятельного изготовления. Представлена схема универсального высоковольтного тестера, расчеты импульсного трансформатора, печатные платы и полная пошаговая сборка комбинированного устройства.

Захотелось заиметь себе в хозяйстве прибор для проверки светодиодов, стабилитронов, и прочих случаев, где может потребоваться относительно большое напряжение при малом токе. Китайцы делают подобные устройства, найти можно по словосочетанию LED Tester, но просто купить не интересно, да и вообще не наш метод. Поэтому в данной статье я подробно расскажу о процессе разработки, создания и применения подобного девайса.

измерительный прибор-1

Универсальный измерительный прибор

Разберем кратко общий принцип работы. По сути своей прибор — это источник тока с максимальным напряжением на выходе около 260-270 вольт. Выходной ток можно выбирать из трех вариантов : 1 мА, 10 мА и 20 мА (выбор осуществляется клавишным переключателем, где положение «0» это ток в 1 мА, «l» — 10 мА, «ll» — 20 мА). Встроенный вольтметр показывает напряжение на выходных клеммах при установившемся токе. Теперь рассмотрим подробно схему и принципы ее работы.

Измерительный прибор: схема

Схема

Источник исходного высокого напряжения собран на популярной микросхеме IR2153, по полумостовой топологии. Обычно в маломощных устройствах, каковым является данный прибор, используют различные варианты однотактных обратноходовых топологий, но у таких вариантов, несмотря на простоту реализации и меньшее число внешних компонентов, есть один неприятный момент — это количество витков в обмотках.

Так как то количество витков, которое требовалось бы намотать в случае однотактного преобразователя для получения необходимого напряжения вряд ли бы удалось разместить на имеющимся сердечнике, выбор пал на двухтактную топологию и мостовой вариант выпрямителя, что позволило обойтись минимальным числом витков да и просто намотать все обмотки проводом 0,5 мм, что был в наличии, на сердечник ETD29/16/10, который так же имелся под рукой. В итоге получилось 51 виток в первичке и 86 во вторичной обмотке. Для расчетов как всегда использовал программу Владимира Денисенко, широко известного в узких кругах как Starichok.

Расчет обмотки основного преобразователя:

 Расчет обмотки основного преобразователя

Включение и обвязка микросхемы вполне себе типовые. Частота работы преобразователя выбиралась минимально возможной, но так, чтобы влезли все обмотки, поэтому она немного выше, чем в большинстве блоков питания и составляет в моем случае около 55 кГц, задается резистором R23 и конденсатором С27 (на схеме они обозначены с индексом T). Если ее сделать еще меньше то увеличится количество витков в обмотках и они просто не поместятся на каркасе. При частоте в 55 кГц все работает как надо, ключи при работе немного теплые, на плате предусмотрено место для их радиатора.

измерительный прибор-4

Для питания микросхемы предусмотрена отдельная обмотка самозапитки. Оптимально напряжение для управления ключами примерно 15 вольт, на это напряжение и рассчитывается эта обмотка или чуть больше:

измерительный прибор-5

Эта обмотка подключена к выводам 2,3,4 трансформатора 2,3 — начало и конец обмотки 4 — средняя точка.

В самой микросхеме имеется встроенный стабилитрон на 15,6 вольт, но для уменьшения ее нагрева и увеличения надежности работы лучше дополнительно использовать внешний на чуть меньшее напряжение (ровно на 15 вольт в моем случае). Первоначальный запуск происходит после зарядки конденсатора С8 через резистор R1 номиналом 330 ком, после запуска преобразователя питание микросхемы идет уже от обмотки. Если конденсатор заряжается слишком долго и, соответственно, запуск происходит медленно, можно уменьшить номинал этого резистора до 100-70 Ком.

После трансформатора мы получаем основное напряжение порядка 220-240 вольт, в моем случае получилось 260, но точного соответствия расчетным параметрам здесь не требуется, т.к. стабилизация все равно происходит по току.

Далее по схеме следует параметрический стабилизатор напряжения на 30 вольт, выполненный на транзисторе Q1, стабилитроне D7 и резисторе R24.

измерительный прибор-6

На выходе получаем напряжение чуть больше, чем напряжение стабилизации стабилитрона. Резистор в цепи базы подбирается таким образом, чтобы ток базы умноженный на коэффициент усиления транзистора по току был равен требуемому току нагрузки или немного больше. В моем случае ток базы Iб = 1 мА, коэффициент усиления транзистора h21э = 20, соответственно, ток нагрузки Iн = 20 мА, чего хватает, даже с большим запасом.

Это напряжение используется для питания операционного усилителя и для получения опорного напряжения +5в. Транзистор во время работы нагревается, поэтому его необходимо установить на радиатор, место для которого предусмотрено на плате.

Конечно для питания операционного усилителя хорошо бы было намотать отдельную обмотку, но в данном случае она бы просто уже не влезла. Да и к тому же потребление ОУ небольшое и нагрев транзистора вполне приемлемый.

Опорное напряжение (примерно 5 вольт) формируется с помощью микросхемы TL431, включенной по схеме стабилизатора напряжения. Потенциометром, обозначенным на схеме как 5VREF, можно в небольших пределах регулировать опорное напряжение, подаваемое на прямой вход ОУ и, как следствие, выходной ток прибора.

измерительный прибор-7

Теперь непосредственно о стабилизации выходного тока.

измерительный прибор-8

Операционный усилитель сравнивает опорное напряжение, подаваемое на его прямой вход и напряжение с датчика тока (шунта) выполненного на резисторах R4, R18, R19, и в зависимости от результата открывает или закрывает транзистор Q2, поддерживая постоянное напряжение на шунте и, как следствие, постоянный ток в цепи нагрузки. От резисторов шунта сделаны отводы для подключения переключателя, с помощью которого можно закорачивать резисторы, тем самым меняя общее сопротивление шунта и, соответственно, стабилизируемый ток (включены все — 5,2 КОм, замкнут R4 — 510 Ом, замкнуты R4, R18 — 240 Ом).

Резисторы лучше использовать с допуском 1%. Инверсный вход операционного усилителя защищен супрессором D12 на 18 вольт, его наличие необязательно, но я решил перестраховаться. Транзистор Q2 также нагревается во время работы и тоже должен быть смонтирован на радиатор.

Итак, основная задача решена, на выходе прибора есть необходимое напряжение и стабильный ток. Осталось решить вопрос с измерением и отображением этого напряжения.

Существует много различных модулей вольтметров, но в данной ситуации подходят далеко не все. Дело в том, что при минимальном токе (1 мА) входное сопротивление вольтметра будет серьезно влиять на выходное напряжение, просаживая его (например, при входном сопротивлении 100 КОм и стабильном токе 1 мА больше 100 В на выходе получить не удастся; два из трех модулей, которые были у меня в наличии, имели сопротивление 60КОм и 120 КОм). Если измерять выходное напряжение мультиметром, то таких проблем уже нет, т.к. их входное сопротивление обычно составляет от 1 мегаома и выше.

После недолгого поиска был найден подходящий вольтметр со входным сопротивлением порядка 800 КОм, чего вполне достаточно. Выглядит он таким образом:

измерительный прибор-9

Приобретался тут. Это совмещенный модуль амперметра и вольтметра. По заявленным характеристикам на 200 вольт и 10 ампер. По факту он может измерять напряжение вплоть до 240 вольт. Амперметр, входящий в его состав, не нужен, т.к. ток стабилизирован и известен, поэтому табло амперметра просто отключено. Продаются похожие, более дешевые приборы с тремя цифрами на экране, но они не подходят, т.к. там слишком маленькое входное сопротивление, у этого модуля 4 цифры! Можно, конечно, попробовать перепаять делитель входного напряжения, но это если нет других вариантов.

Вторая проблема, которую необходимо решить, это питание этого самого вольтметра. Конечно он может питаться и от измеряемого напряжения, но это нам не подходит, опять же слишком большое потребление. Однако, от 30 вольт, которыми питается ОУ, его питать тоже нельзя, т.к. земля и минус выходного напряжения в данной схеме — это не одно и то же, и между ними может быть достаточно большое напряжение.

Выход — использовать отдельную обмотку. Она состоит из двух половин со средней точкой по три витка в каждой, средняя точка подключается к отрицательной выходной клемме (V_led на схеме) отвод 10 у трансформатора на схеме, начало и конец к выводам 9 и 11. На выходе с этой обмотки мы имеем примерно 6 вольт, которые выпрямляются диодной сборкой D14, подаются на линейный пятивольтовый стабилизатор, от которого и питается вольтметр.

Немного об общей конструкции устройства. Трансформатор намотан на сердечнике ETD29/16/10 проводом 0,5 мм, на каркасе B66359B1013T001 (горизонтальный). Т.к. используется полумост и мостовой выпрямитель на выходе, направление намотки основных обмоток особого значения не имеет. Ошибиться можно разве что в намотке дополнительных обмоток (самозапитки и питания вольтметра), их следует мотать в последнюю очередь, возможно использовать более тонкий провод; начинаем с одного конца, мотаем половину, делаем отвод и мотаем дальше в ту же строну. Плата рассчитывалась под установку в корпус Gainta G1098. Размер платы примерно 99мм*67мм, это значит, что при заказе у китайцев пойдет по минимально возможной цене. Общий вид платы:

Общий вид (3D модель):

измерительный прибор-12

Теперь непосредственно об использовании устройства. Первое, для чего оно задумывалось, — это тестирование светодиодов, диодных сборок:

измерительный прибор-13 измерительный прибор-14 измерительный прибор-15
измерительный прибор-16 измерительный прибор-17 измерительный прибор-18

Тут все просто: подключаем, выставляем требуемый ток и наблюдаем работу диодов и падение напряжения на них. Стоит только аккуратно работать с одиночными светодиодами, особенно синими (белыми) — они не любят переполюсовки и их лучше подключать до включения устройства, чтобы избежать повреждения высоким напряжением.

Следующее применение — это проверка напряжения стабилитронов:

image-19 image-20 image-21

Еще один вариант применения — это проверка максимально допустимого рабочего напряжения конденсаторов:

image-22 image-23

Как видно, исправные конденсаторы выдерживают напряжение даже с небольшим запасом. При подключении конденсатора к тестеру напряжение на нем начинает постепенно расти до тех пор, пока ток утечки не становится равным току стабилизации (тестировать конденсаторы стоит на минимальном токе в 1 мА), тогда показания вольтметра стабилизируются. На фото первый конденсатор на 25 вольт 470 микрофарад, как видно, держит напряжение до 35 вольт, второй на 100 вольт и 470 микрофарад — соответственно, держит до 122 вольт.

Хотя этот способ описывается в нескольких источниках, у меня были опасения, что таким образом можно повредить конденсатор, все-таки происходит его пробой, хотя ток при этом ограничен всего 1 мА. Но после многократного повторения опыта каких-либо изменений характеристик конденсатора (ёмкости, эквивалентного последовательного сопротивления (ESR), добротности (Vloss)) мне обнаружить не удалось, поэтому делаю вывод, что проверка таким образом максимально допустимого напряжения вполне безопасна.

Еще один, в принципе, очевидный момент, но все же: при стабилизации тока в 1мА на резисторе будет падать напряжение в вольтах численно примерно равное номиналу резистора в килоомах:

image-24 image-25 image-26
image-27 image-28 image-29

Конечно, из-за большой погрешности, непосредственно для измерений использовать данный метод представляется маловероятным, но как оценочный вариант может где и сгодится.

Ну и осталось проверить заявленные характеристики, а именно ток стабилизации.

На КЗ:

image-30 image-31 image-32

И с потребителем:

Комбинированный прибор измерения высокого напряжения image-34 image-35

Еще один очень важный момент: на выходе тестера имеется достаточно высокое напряжение, и, хотя максимальный ток и ограничен на безопасном уровне (для постоянного тока вроде до 50 мА допустимо), а также есть гальваническая развязка от питающей электросети, но все люди разные, поэтому во время работы необходимо соблюдать все меры предосторожности и не касаться непосредственно оголенных выводов! Хоть это и не смертельно, но довольно неприятно.

Проект как всегда открытый, полностью доступен по ссылке.

Универсальный высоковольтный тестер

Прикрепленные файлы:

Скачать: Gerber_PCB_LED_tester.zip (136 Кб)

Источник: cxem.net

Фирменные усилители мощности