Зачем нужны бестрансформаторные блоки питания


Бестрансформаторные блоки питания-01

Компактные бестрансформаторные блоки питания часто используются для питания от электросети небольших маломощных устройств. В этой статье мы рассмотрим несколько аппаратных аспектов, а во второй части покажем, как смоделировать такую ​​схему.

Если ток, потребляемый нагрузкой, составляет порядка нескольких десятков миллиампер, можно легко преобразовать входное напряжение переменного тока в напряжение постоянного тока без необходимости использования громоздких и дорогих трансформаторов.

Бестрансформаторные блоки питания не только имеют меньший вес и габариты, но и дешевле. В зависимости от типа схемы, бестрансформаторные блоки питания делятся на две категории: емкостные и резистивные.

Ниже мы разберем характеристики каждого типа этих схем. В статье также даются практические советы о том, как выбрать мощность соответствующих электронных компонентов для этой системы и какие меры следует предпринять для повышения безопасности эксплуатации такого блока питания.

Бестрансформаторный емкостный блок питания

Схема бестрансформаторного емкостного блока питания показана на рисунке 1. Значения, указанные для компонентов, относятся к конкретной схеме блока питания, а формулы, позволяющие рассчитать эти значения, приведены ниже. L и N указывают, соответственно, «фазу» и «ноль» сетевого напряжения переменного тока, в то время как VOUT — выходное напряжение, а IOUT — выходной ток.

Пусковой ток (потенциально способный повредить компоненты) ограничивается резистором R1 и реактивным сопротивлением C1. Элемент D1 является диодом Зенера, который обеспечивает стабилизированное опорное напряжение, в то время как D2 представляет собой кремниевый диод с задачей выпрямления напряжения переменного тока.

Бестрансформаторные блоки питания -схема
Рисунок 1: Емкостный бестрансформаторный блок питания

Напряжение на нагрузке остается постоянным, пока выходной ток IOUT меньше или равен входному току IIN, значение которого можно рассчитать как:

Формула-1

Где VZ — напряжение стабилитрона, VRMS — это среднеквадратичное значение входного переменного напряжения, а f — его частота. Минимальное значение IIN должно соответствовать потребной мощности нагрузки, а его максимальное значение должно использоваться для выбора правильной номинальной мощности для каждого компонента. Выходное напряжение VOUT можно рассчитать как:

Читайте также:  AC DC преобразователь без индуктивных компонентов

Формула-2

Где VD — напряжение прямого смещения на D2 (0,6–0,7v для обычного кремниевого диода). Что касается R1, рекомендуется выбирать элемент, по крайней мере, с удвоенной мощностью сравнительно с теоретическим значением PR1, определяемым по формуле:

ффформула-3

Конденсатор C1, который дает название этому типу схемы, следует выбирать с напряжением, по крайней мере, вдвое превышающим напряжение сети переменного тока (например, 250v в США). Диод D1 должен иметь мощность, как минимум, в два раза превышающую теоретическое значение, определяемое следующей формулой:

Формула-4

То же самое относится к мощности диода D2, где значение постоянного напряжения 0,7v теперь может использоваться вместо VZ. Для C2 обычно применяется электролитический конденсатор с напряжением в два раза выше VZ.

Основные преимущества емкостной схемы, в сопоставлении с трансформаторным вариантом заключаются в меньших размерах, весе и стоимости. Сравнительно с конструкцией резистивного типа, представленным в следующем абзаце, эта схема позволяет получить более высокий уровень эффективности. К недостаткам можно отнести отсутствие изоляции от входного переменного напряжения и более высокую стоимость в отличии от резистивным прибором.

Бестрансформаторный резистивный блок питания

Схема типичного бестрансформаторного резистивного блока питания показана на рисунке 2. Опять же, выходное напряжение VOUT остается постоянным, пока ток IOUT меньше или равен входному току IIN, с той лишь разницей, что теперь ограничение пускового тока осуществляется только резистором R1. Выходное напряжение VOUT можно рассчитать по той же формуле, что и для емкостного блока питания, а входной ток IIN теперь можно получить, применив следующую формулу:

Бестрансформаторные блоки питания-2
Рисунок 2: Резистивный бестрансформаторный источник питания

Как и в предыдущем случае, компоненты должны быть выбраны со значением мощности, по крайней мере, вдвое превышающим теоретическое значение, которое можно рассчитать, применив закон Ома ( P=R×I2 для резистора R1 и P=V×I для диодов D1 и D2 ). Электролитический конденсатор С2 должен иметь такое же значение, как в емкостном случае.

Читайте также:  Схема инвертора напряжения 12v в 220v

Преимущество резистивного источника питания в том, что он имеет меньшие размеры и вес в отличии от трансформаторной версии и представляет собой самое дешевое устройство. Однако даже в этом случае нет изоляции от сети переменного тока и КПД ниже, чем у емкостного варианта схемы.

Как повысить безопасность

Обе предложенные схемы имеют большой предел: они лишены какой-либо изоляции и защиты от сетевого напряжения, что представляет собой серьезную проблему безопасности. Однако путем внесения некоторых небольших изменений можно настроить обе цепи для удовлетворения этого требования. Модификации, показанные на рисунке 3, включают в себя эти добавления:

  • Предохранитель для защиты от перегрузки по току
  • Варистор для защиты от переходных процессов
  • Резистор R2 ( R3 ) параллельно включенный с C1 ( C3 ) обеспечивают улучшения электромагнитной устойчивости.
  • Разделение R1 на два резистора R1 и R2 для лучшей защиты от переходных процессов напряжения и предотвращения возникновения электрической дуги (только для резистивной цепи).

Бестрансформаторные блоки питания-3
Рисунок 3: Модификации для повышения безопасности

Не нашли что искали? Смотрите еще: