Фильтр низких частот для сабвуфера


В этом случае VIN — это напряжение после резистивной цепи, состоящей из R1, R2 и Rz. Чтобы вычислить VIN1, мы можем использовать наложение эффектов, следуя процедуре, аналогичной той, которая обычно используется для определения поляризации в схемах традиционных биполярных транзисторов. Напряжение будет суммой двух элементов: составляющей V1IN, связанной с входным напряжением VIN, и V1alim, полученной из напряжения источника питания Valim:

В этом случае VIN — это напряжение после резистивной цепи, состоящей из R1, R2 и Rz. Чтобы вычислить VIN1, мы можем использовать наложение эффектов, следуя процедуре, аналогичной той, которая обычно используется для определения поляризации в схемах традиционных биполярных транзисторов. Напряжение будет суммой двух элементов: компонента V1IN, относящегося к входному напряжению VIN, и V1alim, полученного из напряжения источника питания Valim:

Чтобы найти значение V<sup>1</sup> alim, мы можем рассматривать конденсатор CP1 как разомкнутую цепь, так как Valim — это постоянное напряжение:

В то время как для определения напряжения V1<sub>IN</sub> можно считать Valim = 0V, то мы можем в цепь источника питания поставить перемычку, то-есть закоротить,(как того требует метод наложения):

Суммируя два результата, мы получаем:

Коэффициент усиления неинвертирующего усилителя не зависит от сопротивлений, которые появляются в выражении VIN1, и поэтому для простоты мы можем поставить его равным константе:

Таким образом, общий коэффициент усиления неинвертирующего каскада равен:

4.1 — Выбор значений компонентов

Чтобы найти значения компонентов, мы можем сделать некоторые краткие соображения: мы решаем, что напряжение VIN сообщается без изменений на выходе; для правильной поляризации сигнала необходимо суммировать половину напряжения источника питания с VIN; наконец, мы выбрали α=2, поскольку это позволяет нам использовать RF = RG. Теперь мы можем написать систему уравнений на основе прироста VIN e Valim:

И, решая ее, получаем:

Чтобы завершить информацию о системе, мы можем вычислить входное сопротивление всей цепи:

Выбирая R2 = 33 кОм и учитывая приближение серии E12, получаем хорошие значения: R1 = 100 кОм, Rz = 22 кОм, Rin = 63 кОм.

Читайте также:  Схемы усилителя на транзисторах

4.2 — Конденсаторы развязки

Конденсатор CP1 блокирует ток поляризации цепи, поэтому он не течет в устройство, подключенное ко входу. Другими словами, это фильтр верхних частот со следующей частотой среза:

Мы предполагаем, что частота среза этого фильтра намного ниже минимальной рабочей частоты схемы, например 1 Гц. Поскольку Rin = 66 кОм, получаем C=2,5 мкФ. Конденсатор емкостью 47 мкФ более чем достаточен для развязки. Аналогичные соображения можно сделать для CP2, заменив Rin сопротивлением нагрузки; это сопротивление будет довольно высоким, так как это вход усилителя.

5 — Конструкция: фильтр

Следующий этап — настоящий фильтр. В Интернете существует множество доказательств для вычисления его передаточной функции, среди которых одно из Википедии: топология Саллена-Ки. Вот оно:

где Rp — значение, принимаемое потенциометром P1. Анализируя этот многочлен, можно извлечь некоторые математические выражения, полезные в процессе проектирования.

5.1 — Расчетные уравнения

Если знаменатель имеет два реальных полюса, диаграмма Боде передаточной функции начнет понижаться на первом полюсе с наклоном -20 дБ/декада; на втором полюсе крутизна уменьшится до конечного значения -40 дБ/декада. Если, наоборот, знаменатель имеет два полюса комплексного сопряжения, будет присутствовать только одна частота среза с асимптотическим наклоном -40 дБ/декада. Это лучшее состояние для фильтра. Чтобы получить это с математической точки зрения, мы предполагаем, что знаменатель имеет отрицательный дискриминант:

в этом случае частота среза равна:

Для определения размера компонентов фильтра мы можем использовать выражение его частоты среза. Когда потенциометр находится в конце или в начале, Rp будет равным Rtot, что является общим сопротивлением потенциометра, или будет 0 Ом. В этих двух случаях результирующие частоты среза будут соответствовать минимальному или максимальному допустимому, то есть f0 = 20 Гц и f1 = 200 Гц. Формула частоты среза сводится к следующему: Подставляя предельные частоты и решая систему уравнений, составленную из двух предыдущих уравнений, мы получаем:

Другое расчетное условие может быть получено с помощью выражения добротности. Если передаточная функция имеет комплексно сопряженные полюса, может возникнуть резонансный пик на частоте среза. Чтобы удалить этот пик, необходимо ограничить добротность фильтра Q:

5.2 — Графический выбор значений компонентов

Давайте вернемся к полезным уравнениям написанным выше:

по порядку, это уравнение, полученное из минимальной и максимальной частоты среза, условие о дискриминанте для наличия комплексно сопряженных полюсов и условие о добротности для избежания резонансных пиков.

Первое из трех уравнений содержит все значения компонентов, которые необходимо вычислить. Чтобы выбрать их легко и интуитивно, кривая была построена графически, задав параметры C1 и C1, RA по оси абсцисс и RB по оси ординат.

На том же графике область, где верно первое неравенство об отрицательном дискриминанте, была окрашена в зеленый и желтый цвета; область, окрашенная только зеленым цветом, — это место, где проверяется второе неравенство об ограничении добротности. Два неравенства оцениваются в предположении, что потенциометр имеет максимальное значение, то есть Rp = Rtot = 99RA. Окончательный график показан на следующем рисунке в случае C1 = 4,7 мкФ и C2 = 100 нФ:

График можно построить, задав параметрические значения для C1 и C2. Значения RA и RB можно выбрать в зеленой зоне, то есть в зоне, где оба неравенства верны. Значения, например, равны RA = 1,2 кОм, RB = 1,2 кОм , Rtot = 120 кОм.

Фирменные усилители мощности